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Abstract - Recently, to reduce the inconvenience caused by 

authentication operations in portable terminals, various 

authentication methods based on behavior characteristics 

have been studied. Gait-based authentication is one of them. 

This authentication method identifies individuals based on 

walking motions measured by wearable sensors such as 

acceleration sensors. This study aims to improve the 

authentication accuracy using trouser front pocket sensors. 

In this study, we consider two analyses to achieve this goal. 

First, we investigate the relation between walking motion 

and gait signals from trouser pocket sensors to extract 

signals of same-gait motion intervals in different subjects. 

Next, we verify an authentication method that uses both an 

acceleration sensor and a gyro sensor to improve the 

authentication accuracy. 

Keywords: gait-based authentication, acceleration sensor, 

gryro sensor, dynamic time warping, fusion 

1 INTRODUCTION 

The use of portable terminals such as smartphones has 

increased in the various situations and can be expected to 

increase in the future. Accordingly, smartphones and other 

portable terminals have equipped various personal 

authentication functions to prevent imposters from misusing. 

Recently, authentication functions such as pattern locks, 

which are more difficult for an imposter to break, has been 

incorporated into the devices. However, there are reports 

and news items showing that approximately 50% of users do 

not lock their devices by inconvenient their operations.   

Previous studies proposed easier authentication methods by 

various device operations, such as swinging their terminals. 

However these methods require conscious action, so they 

cannot perform authentication in the background. 

 On the other hand, it is conceivable that individual 

authentication might be established through daily repeated 

activities. With such a method, a user can unlock a terminal 

without conscious operations. Gait-based authentication is 

one of this type authentications. We think that walking is 

performed in various situations. If gait authentication was 

established by sensors on a portable terminal, the 

inconvenience users feel in individual authentication would 

be reduced. 

 We work with multi-modal authentication to improve 

authentication performance by combining multiple methods 

in individual authentication [1]. Fernand et al. [2] combined 

faces and fingerprints to improve accuracy. Zhou et al. [3] 

combined features of side face and gait using principal 

component analysis to identify people, and many other 

researchers have also attempted to improve accuracy using 

biometric authentication. 

However, wearing multiple sensors on various body parts 

sacrifices convenience, the advantage of gait authentication. 

For this reason, we adopt a method that combines multiple 

sensor methods measuring the same body parts using 

multiple sensors, and a multi-sample method that measures a 

modality several times to improve performance. It is 

possible to equip a terminal with multiple sensors, enabling 

us to authenticate using multiple sensors without imposing a 

burden on users. 

In this study, we use two sensors (a three-axis acceleration 

sensor and a three-axis gyro sensor) to measure human 

walking motion. We show that the proposed method, which 

combines distance information recorded by these two 

sensors, improves authentication accuracy in comparison 

with previous studies. 

2 RELATED WORK  

2.1 Position of sensors 

Table 1 summarizes the related work. These studies 

explored features and authentication methods primarily to 

improve performance. However, they did not investigate 

which sensor positions would be acceptable for daily use.  

Those studies measured mainly using devices attached on 

the belt on the middle or side of the waist, and authenticated 

using measured acceleration signals. This requires using a 

smartphone case such as a holster for attaching the terminal 

to the waist. Users might find this unacceptable, because 

gait authentication then requires them to have the container 

with them. Consequently, we decided that the trouser front-

pocket might be acceptable to users, because they can then 

have the terminal without using special tools, and we 

investigated performance improvement in this position. The 

study in [6] examined this position. This study aims to 

improve authentication performance in comparison to that 

previous study. 

 

Table 1: Summary of gait-based authentication work 

work position Sensor 

Mäntyjärviet et al. [4] 

Gafurov et al. [5] 

Gafurov et al. [6] 

Gafurov et al. [7] 

Gracian et al. [8] 

Derawi et al. [9] 

Soumik et al. [10] 

belt 

hip 

ankle 

trouser pocket 

belt 

belt 

eight-joints 

acceleration 

acceleration 

acceleration 

acceleration 

acceleration 

acceleration 

rotation angle 
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2.2 Fusion of multiple sensors 

Many acceleration-based approaches to gait-based 

authentication have been explored. 

Mäntyjärviet et al. [4] proposed three authentication 

methods: fast Fourier transform, correlation, and statistical 

features. Gafurov et al. [5][6][7] studied methods based on 

acceleration, and made measurements by using acceleration 

sensors on various parts of subject’s bodies. They used a 

template signal and multiple time-normalized signals, with 

the acceleration sensor placed in the trouser front pocket [7]. 

Gracian et al. [8] devised the feature of gait acceleration 

for user authentication. Derawi et al. [9] proposed a multi-

sampling method that authenticated using multiple signals 

from both templates and inputs. Their method calculated 

distances of all combinations of templates and inputs with 

dynamic time warping (DTW).  Soumik et al. [10] measured 

walking motions with eight angle sensors. 

 To the best of our knowledge, there are no studies on the 

fusion of multiple sensors placed in a trouser front pocket. 

To improve authentication accuracy, we propose a method 

of fused distances based on acceleration and angular 

velocity placed in a trouser front pocket. 

3 PROPOSED METHOD 

3.1 Gait recognition and quasi-periodic signal 

extraction  

We attached a sensor unit whose x-, y-, and z-axis 

detected vertical, sideway, and forward-backward 

acceleration, respectively, in standing posture. The direction 

of each axis is shown in Figure 1. Each subject wore a 

sensor unit attached to a belt with hook and loop fastener. 

This unit was placed on the front of the left femur area. 

Examples of three-axis acceleration and three-axis angular 

velocity are shown in Figures 2 and 3. During walking, the 

acceleration and gyro sensors measured similar waveforms 

repeatedly. These signals are quasi-periodic signals with no 

equalization of cycles and amplitudes. 

 The length of a gait cycle is two steps. The gait cycle 

consists of four periods, two double limb support periods, 

and two single limb support periods. We walk forward by 

repeating the four periods. If we extract the gait signals from 

different walking period for each subject, we may achieve 

good performance seemingly in authentication. To prevent 

influence on authentication accuracy by different waveform 

for each user, we decided to extract their quasi-periodic 

signals with the same order of the gait periods to all users. 

For this reason, we conducted a preliminary experiment to 

investigate the relation between walking motion and six-axis 

signals. Two force sensors synchronized with the sensor unit 

were attached to their left toe and heel. Examples of the 

acceleration along the x-axis and the signal of the force 

sensor are shown in Figure 4. The graph shows that the time 

when the acceleration becomes a local maximum is 

approximately equal to the time when the value of the heel 

force sensor begins to increase. This result indicates that the 

time of local maximum of acceleration is the heel landing 

time. 

 
Figure 1: Directions of three axes. 

 

Figure 2: Gait signals from three-axis acceleration sensor. 

 

 
Figure 3: Gait signals from three-axis gyro sensor. 

 

Figure 4: Example of the vertical acceleration signal and 

force signal. 
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3.1.1. Walking detection 

In this study, we use a threshold in vertical acceleration to 

detect walking start time based on previous research [7]. 

Before beginning, all signals were smoothed using a 

Savitzky–Golay filter [11]. We look for the time 𝑡𝑠 when the 

acceleration is greater than 1.2 G from the start of this quasi-

periodic signal extraction method. 

3.1.2. Quasi-periodic signal extraction 

After walking detection, we extract quasi-periodic signals 

measuring the period between left-heel landing time. The 

extraction process with x-axis acceleration    is as follows: 

1) We search for the maximum time 𝑇0 within two seconds 

after 𝑡𝑠. We selected 𝑇0 as the start time of cycle 𝑪0. 

2) To find the end time of 𝑪0, we search for all times of 

local maxima from 0.7 to 1.3 s after 𝑇0 from   . 

3) We extract subsets 𝒔0 that are 0.6 s of the signal. 𝑇0 is the 

middle time of subset 𝒔0. In the same way, each 𝒕1 is the 

middle time of subsets 𝑺1 = {𝒔11, 𝒔12, 𝒔13⋯}, which are 

extracted as 0.6 s signals. We calculate values of the 

normalized cross correlation (NCC) among 𝒔0 and each 

𝑺𝟏 . The middle time of NCC values is decided as the 

start time 𝑇1 of the next cycle 𝑪1 . Cycle 𝑪0 is between 

𝑇0 and 𝑇1 . This is shown in Figure 5. 

4) Next, we search for all times of local maxima from 0.7 to 

1.3 s after 𝑇1. We extract the subsets of signal from 𝑇1 to 

each time of the local maxima. The time of minimum 

distance among 𝑪0  and each subset with DTW is 

decided as the start time 𝑇2 of the next cycle 𝑪2. In this 

calculation, to eliminate the effect of differences in 

signal length, we divided each distance by the total 

length of 𝑪0 and each 𝑺2.  

5) After the time 𝑇𝑛 of minimum distance is calculated using 

DTW among 𝑪𝑛−1 and 𝑺𝑛 , we begin searching for the 

next start time 𝑇𝑛+1 by repeating step 4) .  

6) When forward searching is completed, we repeat the 

process by searching backward at 𝑇0. 

7) When we observed the extracted signals, we found that 

those near the signals of starting to walk had a large 

distortion as compared with other signals. Based on the 

result of analysis, the variance of each signal with a 

large distortion is smaller than the variance of other 

signals. Hence, we searched for the first distorted signals 

whose variance was greater than the threshold 0.09. We 

assumed that the signals used for authentication were 

signals subsequent to it. Examples of the variance from 

extracted signals are shown in Figure 6. In this x-axis 

acceleration, we took the signals to be used for 

authentication as the cycles after 𝐶0 . We recorded the 

starting times of extracted cycles, and extracted signals 

for the other two-axis acceleration and three-axis angular 

velocity using the same starting time. 

 Figure 7 shows two extracted signals from the same subject. 

In Figure 8, the two lines indicate extracted signals from 

different subjects. 

 

 
Figure 5: Example of extracted cycle 𝑪0 and local maximum.  

 

 
Figure 6: Example of extracted cycles and their variances. 

 

 
Figure 7: Extracted signals from same subject. 

 

 
Figure 8: Extracted signals from two subjects. 
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3.2 Distance calculation methods 

We selected DTW that is frequently used for calculating 

dissimilarity between time series data. Let 𝑿 = {𝑥(𝑖)|𝑖 =
 , ,⋯ ,𝑚} , 𝒀 = {𝑦(𝑗)|𝑗 =  , ,⋯ , 𝑛}  be time series data. 

The DTW distance between 𝑿 and 𝒀 is defined as 

 

𝐷𝑇𝑊(𝑿, 𝒀) = 𝑓(𝑚, 𝑛)                                                    

𝑓(𝑖, 𝑗) = 𝑚𝑖𝑛 {

𝑓(𝑖 −  , 𝑗 −  ) + 𝑑𝑖𝑠𝑡(𝑥(𝑖), 𝑦(𝑗))

𝑓(𝑖, 𝑗 −  ) + 𝑑𝑖𝑠𝑡(𝑥(𝑖), 𝑦(𝑗)) + 𝐺𝑃

𝑓(𝑖 −  , 𝑗) + 𝑑𝑖𝑠𝑡(𝑥(𝑖), 𝑦(𝑗)) + 𝐺𝑃

 

𝑓( , ) =                                                                           
 

where 𝐷𝑇𝑊(𝑿, 𝒀)  is the DTW distance, 𝑚  and 𝑛  are the 

number of lengths in signals 𝑿  and 𝒀 , and 𝐺𝑃  is a gap 

penalty in the case of non-linear extension. We adopted the 

different distance calculation method for each sensor. The 

distance calculation function is substituted into  

𝑑𝑖𝑠𝑡(𝑥(𝑖), 𝑦(𝑗)) corresponding to the type of sensors. Next, 

to adapt the differences of signal length to differences of 

walking speed, Normalized distance 𝐷(𝑿, 𝒀) is calculated as 

 

𝐷(𝑿, 𝒀) =
𝐷𝑇𝑊(𝑿, 𝒀)

𝑚 + 𝑛
 

 

In the multi-sample case, we used the median as the 

distance. Let 𝒀 = {𝒀1, 𝒀2, ⋯ , 𝒀𝑘 , ⋯ , 𝒀𝑝} be multiple 

template signals. This distance was calculated as 

 

𝐷(𝑿, 𝒀) = m dian
𝑘

(𝐷(𝑿, 𝒀𝑘)) 

 

where 𝐷(𝑿, 𝒀𝑘) is the normalized distance between an input 

signal and 𝑘 template signals of multiple template signals. 

3.2.1. Angular velocity distance  

It is known that angular velocity does not depend on 

distance from the center of rotation. We calculate the 

absolute distance between the input signal and template 

signals. Even if signals of the same subject are selected, they 

do not correspond to the amplitude value from a difference 

in walking speed. To reduce differences between signals of 

the same subject, we normalized the signals by dividing the 

amplitude of each time by specific values. We adopted the 

method of normalization that divides amplitude of signal by 

the root mean square (RMS). The reason for using RMS for 

normalization is that it provided the best accuracy among 

some normalized methods in a preliminary experiment. 

 Let 𝒈𝑖𝑛
𝑞
= (𝑔𝑖𝑛

𝑞 ( ), 𝑔𝑖𝑛
𝑞 ( ),⋯ , 𝑔𝑖𝑛

𝑞 (𝑖),⋯ , 𝑔𝑖𝑛
𝑞 (𝑚))be the q-

axis input angular velocity signal, and let 

𝒈𝑡 𝑘
𝑞
(𝑔𝑡 𝑘

𝑞 ( ), 𝑔𝑡 𝑘
𝑞 ( ),⋯ , 𝑔𝑡 𝑘

𝑞 (𝑗),⋯ , 𝑔𝑡 𝑘
𝑞 (𝑛))  be the q-axis 

𝑘  template angular velocity signal. We calculate the 

difference of the composed angular velocity between the 𝑖th 

amplitude of a q-axis input angular velocity signal and the 

𝑗th  amplitude of a q-axis 𝑘 template angular velocity signal 

by the absolute distance as 

 

𝑑𝑖𝑠𝑡(𝑔𝑖𝑛
𝑞 (𝑖), 𝑔𝑡 𝑘

𝑞
(𝑗)) = |𝑔𝑖𝑛

𝑞 (𝑖) − 𝑔𝑡 𝑘
𝑞
(𝑗)| 

3.2.2. Acceleration distance  

When measuring circular motion, it is known that 

acceleration depends on the distance from the center of 

rotation. If different amplitude normalizations are applied to 

each axis acceleration, they are compressed at different 

ratios at the same time. As a result, when the normalized 

accelerations of the three axes at the same time were 

combined as a vector, the direction of the vector was 

changed before normalization. This problem was caused by 

comparing it with the values of acceleration. Hence, we 

compared it with the direction of three-axis acceleration 

between the input and the template acceleration signals [12]. 

Let 𝒂𝑖𝑛(𝑖) = (𝑎𝑖𝑛
 (𝑖), 𝑎𝑖𝑛

𝑦 (𝑖), 𝑎𝑖𝑛
 (𝑖))   be the 𝑖th  input 

acceleration vector of an input signal, and let be 𝒂𝑡 𝑘(𝑗) =

(𝑎𝑡 𝑘
 (𝑗), 𝑎𝑡 𝑘

𝑦 (𝑗), 𝑎𝑡 𝑘
 (𝑗))  be the 𝑗 th

 template acceleration 

vector of a 𝑘 template signal. We calculate the difference of 

direction between the 𝑖th input acceleration vector and 𝑗th 𝑘 

template acceleration vector as 

 

𝑑𝑖𝑠𝑡(𝒂𝑖𝑛(𝑖), 𝒂𝑡 𝑘(𝑗)) = ar  o 
〈𝒂𝑖𝑛(𝑖), 𝒂𝑡 𝑘(𝑗)〉

‖𝒂𝑖𝑛(𝑖)‖‖𝒂𝑡 𝑘(𝑗)‖
  

 

To compare this three-axis composite method with others, 

authentication accuracy of each axis acceleration was 

calculated based on same distance calculation method for 

angular velocity. 

3.3 Distance fusion 

To eliminate subject dependency, we subtracted the 

average distance from the distance before fusion. This 

average distance was calculated between a subject’s 

template signal 𝒀  and the same subject’s training data γ 

except his or her template signal 𝒀. The normalized distance 

is calculated by subtracting the average distance from the 

distance calculated by DTW between an input signal and the 

template signals as 

 

𝐷𝑠(𝑿, 𝒀)  = 𝐷(𝑿, 𝒀) − 𝐷(𝜸, 𝒀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
 

Finally, we calculated the fused distances 𝐷𝑓 as 

 

𝐷𝑓 = 𝑓(𝐷𝑠(𝒂𝑖𝑛 , 𝒂𝑡), 𝐷𝑠(𝒈𝑖𝑛
 , 𝒈𝑡

 ), 𝐷𝑠(𝒈𝑖𝑛
𝑦
, 𝒈𝑡

𝑦
), 𝐷𝑠(𝒈𝑖𝑛

 , 𝒈𝑡
 )) 

 

where 𝑓( )  is a function of fusion which combines the 

distances. 

In this study, we consider four rules for fusing distances for 

authentication (1) Addition without weight coefficients 

(denoted as Sum), (2) Linear logistic regression (denoted as 

LLR), (3) Support vector machine (SVM) with linear kernel 

(Linear), (4) SVM with a radial basis function kernel (RBF)  

In this study, we obtained too many negative instances as 

compared with positive instances. It is well known that 

SVM performs poorly in this case. Hence, we applied the 

synthetic minority over-sampling technique [13] to adjust 

the number of these instances. 
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4 EXPERIMENT 

4.1 Dataset 

Data was collected from 50 subjects, ranging in age from 

18 to 21 years old. We instructed the subjects to walk at 

their normal walking speeds. When the measurement began, 

the subjects remained stationary for a few seconds. After 

that, they walked a specified distance once. The 

measurement course is a flat and straight indoor passageway. 

The subjects did not use a clock or metronome to measure 

their walking speed. We set the sampling frequency of the 

sensor unit to 1,000 Hz. To equalize the performance of the 

smartphone’s sensors, we changed the sampling frequency 

from 1,000 to 100 Hz by thinning out. 

4.2 Experimental setting 

We obtained 30 signals of each axis acceleration and 30 

signals of each axis angular velocity from every subject. We 

divided the signals into five groups and performed five-fold 

cross-validation. To generate a fusion model, we used four 

groups as training data, and one group as test data. We 

calculated the distances between all of the training signals of 

all subjects. The distances between the same subjects are 

positive instances, and the distances between different 

subjects are treated as negative instances. The overall 

accuracies were calculated with common thresholds to each 

classifier in each fusion rule. 

 Template signals used for calculating distance include six 

signals, because the number of template signals is equal to 

the number of template signals of the previous study [7]. 

The manner of selecting templates from training data was to 

select six sequential signals from 24 signals. However, when 

some of the sequential six signals were selected as test data 

by cross-validation, we selected the signals in sequence 

from the nearest start time in the training data.  

4.3 Experimental result 

We evaluated accuracy by equal error rate (EER). The 

EER is the value when the false acceptance rate (FAR) and 

the false rejection rate (FRR) are the same. For comparison 

purposes, we calculated EERs four combinations of each 

method, and previous work distance calculation method [7].  

We summarized the EERs in Tables 2 and 3. By 

comparing with each combinations, we can find that both 

multi-sensor and multi-sample are effective for accuracy 

improvement. The minimum EER (the best result) was 1.0%, 

which was achieved by the proposed multi-sensor multi-

sample method with two SVMs. 

 Figures 10 show the receiver operating characteristics 

(ROC) curves for each authentication combinations. From 

the ROC curves, proposed method whici is combination 

method with multi-sensor and multi-sample shows the best 

performance, because most of multi-sample with RBF line is 

plotted in the lower error rate area. The best EER from 

previous work method [6] to each axis signal for this dataset 

was 7.8%.   

 

5 CONCLUSION 

This paper describes an authentication method using multi-

sampling and multi-sensors to improve the accuracy of gait-

based authentication. 

First, we observed the relation among the steps and six-

axis signals in order to extract the quasi-periodic signals 

generated by walking motion of the same phase order in all 

subjects. These findings show that it is possible to divide 

into quasi-periodic signals by extracting x-axis acceleration 

from local maxima to local maxima.  

We evaluated the proposed method with 50 subjects. The 

best EER performance was 1.0%, which was achieved by 

the multi-sensor multi-sample method using SVM. These 

results indicate that the combination of multi-sensor and 

multi-sample is useful for gait-based authentication. 

Furthermore, proposed method leads to better results than 

the conventional method.  

 

Table 2: Uni-sensor EERs [%]. 

 Uni-sensor uni-

sample authentication 

Uni-sensor multi-

sample authentication 

𝒂  

𝒂𝑦 

𝒂  
𝒈  

𝒈𝑦 

𝒈  

8.8 

5.3 

4.6 

6.6 

8.2 

7.4 

4.5 

2.2 

2.2 

2.4 

3.1 

3.0 

 

Table 3: Multi-sensor EERs [%]  

 Multi-sensor 

uni-sample 

authentication 

Multi-sensor 

multi-sample 

 authentication 

Sum  

LLR 

Linear 

RBF 

1.7 

1.5 

1.5 

1.4 

1.2 

1.1 

1.0 

1.0 

 

 
Figure 10: ROC curves of the best methods in each 

authentication combinations 
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