
An Effective Lookup Strategy for Recursive and Iterative Lookup

on Hierarchical DHT

Tomonori Funahashi
*
, Yoshitaka Nakamura

**
 , Yoh Shiraishi

**
 , and Osamu Takahashi

**

*
 Graduate School of Systems Information Science, Future University Hakodate, Japan

**
 School of Systems Information Science, Future University Hakodate, Japan

{g2111032, y-nakamr, siraisi, osamu}@fun.ac.jp

Abstract - Recursive and iterative lookups on the

performance of distributed hash table (DHT) are

deteriorated by churn that nodes leave the network. When

churn occurs infrequently, recursive lookup outperforms

iterative lookup, but it returns back when churn occurs

frequently. Therefore, optimal lookup needs recursive and

iterative lookups to be separated by the frequency of churn.

We propose a lookup strategy that separates recursive and

iterative lookups by the churn rate. However, a common

DHT makes it difficult t establish the neighboring churn rate.

Hierarchical DHT takes into consideration the reliability of

nodes to ascertain the churn rate. Therefore, we compared

our lookup strategy with the use of either recursive or

iterative lookup on hierarchical DHT.

Keywords: Recursive lookup, Iterative lookup, Hierarchical

DHT

1 INTRODUCTION

Peer-to-Peer (P2P) is communication in which each node

is equal and various values are dispersed throughout the

network. Therefore, distributed hash table (DHT) is an

efficient lookup technology in P2P. DHT can discover

values with low numbers of hops in large networks.

Examples of DHT based P2P include Chord [1], Kademlia

[2], and Pastry [3]. Even if DHT uses the same algorithm as

Chord or has routes on the same lookup path, their

communication methods are defined differently. Its methods

are known to be recursive and iterative lookups [4]. These

lookups have different lookup latencies and numbers of

messages. Recursive lookup, which has low latency, is

generally satisfactory. However, the performance of these

lookups deteriorates due to churn where nodes leave the

network. In addition, recursive lookup performs worse than

iterative lookup. Therefore, optimal lookup needs recursive

and iterative lookups to be separated by the system churn

rate. However, flat normal DHT it is not structured to take

into consideration the feature of nodes, e.g. the churn of

nodes. For this reason, it is difficult to establish the system

churn rate.

There is a structure called hierarchical DHT [8][9] that

enables DHT to be used efficiently. This structure can

separate a number of clusters depending on needs. There is

hierarchical DHT with advanced features that has taken into

consideration how reliability of node is [10]. This has a

clustering method that establishes the reliability of nodes.

Thus, each cluster is established the reliability

approximately.

 We propose applying an optimal lookup strategy to each

cluster on hierarchical DHT that takes into consideration the

reliability of nodes and separates recursive and iterative

lookups efficiently in this paper.

2 RELATED WORK

2.1 Chord

Chord is a DHT algorithm that takes into consideration the

hash space as a space like a ring, and sets nodes an identifier

called the node ID with the hash function. Keys are

calculated similarly with this function. Of the nodes arriving

in a network, the node just behind a node is called a
successor node, and the one just before a node is called a

predecessor node. Nodes keep the neighbor as successor list

which has a number of successor nodes, and a finger table

that can route efficiently to the routing table. Chord

completes path length  NO log with these routing tables

when N is the number of nodes. The state of these nodes is

the previous state obtained by churn and failure. For this

reason, Chord is implemented as a stabilization process to

accurately retain the state of neighbor nodes. This is a

process where nodes ask nodes in the routing table. In

addition, it is executed at regular intervals.

2.2 Lookup strategy

Recursive lookup is a lookup strategy that originator node

which demands value requests lookup other nodes. However,

iterative lookup is a method which the originator controls

lookup to ask other nodes about candidates for the next hop.

Figure 1 outlines the shape of each lookup on Chord when

the lookup has three hops (path length).

The originator in recursive lookup forwards a request

message to a node that is closer to the destination (Figure 1

(1)). If a node received a request message does not have the

purposed value, it forwards the request message to a node

that is closer to the destination than itself. This process is

executed till the request message reaches the destination

node (Figure 1 (2), (3)). In contrast, the originator receives

reply messages for request messages after the message has

been forwarded in iterative lookup (Figure 1 (1-2), (2-2)).

128

Figure 1: Recursive and iterative lookup strategy on Chord

when path length = 3.

When a node received request message does not have the

purposed value, it makes the reply message including the

addresses of nodes which are closer to the destination than

itself. The originator node forwards a request message to the

destination node by using the address included in the reply

message.

The performances of recursive and iterative lookups are

affected by these communication methods and churn where

nodes leave the network. The system churn rate, which is

the probability what nodes will leave the network, is

determined the life-time of nodes. R is the defined life-time

of a node and refers to the reliability of nodes. R varies

between nodes. The cumulative distribution function [5] of

exponential or Pareto distribution [6] is used as a function to

define R. R shows how often churn occurs in the system. S is

defined as the time until nodes detect failure and repair the

routing table of the node when churn or failure occurs. For

this reason, S just means the interval in which the

stabilization process is executed. Altogether, large S means

that the stabilization process is seldom executed, but small S

means that stabilization is executed often.

We also assumed that E[R] and E[S] were value expected

for the R and S of neighbor nodes for a node. By using these

parameters, p is defined as the probability of which next hop

candidate node is alive in the network and the success of

forwarding a request message, which is given by the

following [7].

)1(
][][

][

SERE

RE
p




When neighbor nodes are in a steady state when starting

lookup and the originator is not executed to repair its own

routing table, E[S] approximates a fixed value. As a result, p

depends on E[R]. In addition, large E[R] means that

neighbor nodes are alive for a long time, and this also means

that churn is not likely to occur. In contrast, small E[R]

means that churn often occur in neighbor nodes that have

shorter lifetimes. That is, the churn rate is low when p is

high, and it is high when p is low. More specifically, p

means the churn rate in the network when E[S]

approximates a fixed value.

The performance of recursive and iterative lookups are

defined by using churn rate p and latency of communication

[7]. First, we assume that the lookup path length is l and t is

the latency for one hop. We also assume that physical links

between nodes are not considered, and t is fixed. In addition,

T is the time, which is timeout when nodes fail to forward

messages by churn or failure. Here, timeout T is configured

differently at each lookup. The originator in recursive

lookup has to wait for responses to complete as lookup is

completed. However, other nodes only forward request

message to the next hop node, and are not concerned with

the forwarded message. Therefore, T in recursive lookup is

set to no less than the time to complete the entire lookup at

only the originator. For this reason, Tr as the timeout in

recursive lookup is configured as  tlTr 1 . The originator

in iterative lookup similarly waits for a response from the

next hop node point by point. Therefore, timeout is

configured to no less than the time to wait for forward and

reply. Consequently, Ti is the timeout in iterative lookup set

by tlTi 2 . As a result, the expected latency of recursive

lookup E[RL] is defined in the following by these

parameters.

 )2(
1

1][rl

l

T
p

p
tlRLE




The expected latency of iterative lookup E[IL] is also

defined in the following.

)3(
1

2][ilT
p

p
tlILE




In both recursive and iterative lookups, when l and t are

fixed, p has a profound effect on performance. Figure 2

shows that an example of all expected latencies under

different p when l and t are fixed values.

0

50

100

150

200

250

300

350

400

450

500

1 0.9 0.8 0.7 0.6 0.5

E
x

p
ec

te
d

 l
a

te
n

cy

Churn rate (p)

Recursive

Iterative

Figure 2: Expected latencies of recursive and iterative

lookups under different p.

Moreover, Tr is much higher than Ti with this timeout

setting. Thus, by using formula (2), the expected latency of

recursive lookup increases especially when p is low. When p

is low, on the other hand, iterative lookup does not have

such high latency. However, when p is high, e.g. 1p , this

is higher than that of recursive lookup. Therefore, to

increase out the performance of recursive and iterative

lookups, we need determine what the system churn rate is.

2.3 Hierarchical DHT

Hierarchical DHT is a structure that divides a logical

network configuration created by the DHT algorithm [8][9].

Figure 3 shows an example of a hierarchical DHT with two

tiers in the Chord algorithm. Divided networks are called

129

top- and lower-level clusters. A top-level cluster is built by

particular nodes called super nodes. Super nodes generally

adopt strong nodes in the network, e.g., those with a great

deal of high storage and high processing capacities that have

been alive in the network for a long time, or those with wide

bandwidth. Other normal nodes and specific a super node

belong to lower-level cluster. The super node provides

normal nodes with routes to other clusters.

Figure 3: Example of two-tier hierarchical DHT.

Hierarchical DHT can speculate clusters where the

destination of lookup belongs by comparing high m bits

between the key and node ID. This m means the number of

clusters in the hierarchical DHT by 2
m
. When the high m bits

of the key and a node ID are the same, the node forwards in

the cluster. Otherwise, the node asks super node of the

cluster to forward, and the super node finds the destination

cluster and super node address by using the key.

Hierarchical DHT has various features, i.e., to assemble

normal nodes as to their purpose and confine the effect of

churn locally for neighbor nodes. An advanced study of

hierarchical DHT found it to take into account the reliability

of nodes [10]. This determines low-level clusters where

normal nodes belong by using the interval from when they

join to when they leave. The interval time is assumed by

using a function, and this means that it is equivalent to R as

life-time of a node. The function in this study assembled

nodes that had similar R in each cluster. In addition, a super

node was selected as a node that had the highest R in the

cluster. Nodes are clusters obtained by R in this way in

hierarchical DHT that takes reliability into consideration.

Therefore, E[R] becomes high due to clustering nodes that

have higher R, and this also decreases by using clustering

nodes that have lower R. Here, we assume that the interval

for the stabilization process is fixed at all nodes and nodes

obtain E[S], which is almost a fixed value. p is defined as

E[R] in formula (1), and so this differs specifically for each

cluster. Therefore, the p of each cluster can be speculated,

and we can consider the optimal performance of a system

that is appropriate to p.

3 GOAL AND PROBLEM

When p is low in recursive and iterative lookups,

recursive lookup has an advantage, but iterative lookup has

an advantage when p is high. We culled the lookups by

using the churn rate. This ensured that the expected latency

of lookups was the best under any churn rate. Our goal was

to demonstrate this. To speculate churn rate p, we noted

hierarchical DHT took reliability into account. Hierarchical

DHT determines clusters in which p is high or low as a

result of clustering by the R of nodes. We focused on a

structure where p was different for each cluster, and

considered applying each lookup to that. However, each

message format in recursive and iterative lookups uses

differences for that. For this reason, a lookup cannot contact

another lookup.

Here, we propose a strategy that changes over from one

lookup to another by transforming the format of messages.

We will explain how this strategy optimizes performance

more than when only recursive or iterative lookup is used.

4 PROPOSED METHOD

4.1 System model

We propose that each cluster separates recursive and

iterative lookups on hierarchical DHT to take reliability into

consideration. We used the Chord algorithm because it had

various features, e.g., it had a simple structure and was

scalable. We also made note of the stabilization process for

the reason of formula (3). Although super nodes were

adopted in the clusters, we assumed that super nodes would

be adopted in the system. This meant that the R of super

nodes had no relationship to the R in the clusters. Here, the

R of super nodes is Rs, and that of other normal nodes is Rn.

Clusters in assembled nodes that have low Rn, called lower

clusters, use iterative lookup in the clusters because they

have low p. However, clusters in assembled nodes that have

high Rn, called higher clusters, use recursive lookup. For

example, a top-level cluster built by a super node has Rs. Rs

is relatively high approximately R in the system. Therefore,

a top-level cluster uses recursive lookup. There are recursive

and iterative lookups in the system for this reason. Here, it

transforms from recursive into iterative and vice versa about

the message format. This process is executed at super nodes.

This provides the communication between higher and lower

clusters.

All nodes have a routing table built by the Chord

algorithm to structure hierarchical DHT. For example, that

of the normal node includes normal nodes that belong to the

same cluster and super nodes of the cluster. Also, super

nodes have routing tables that included normal nodes

belonging to the cluster and the super nodes of the top-level

cluster.

4.2 Transformed process

There are request and reply messages in recursive and

iterative lookups. Each message format is different due to

the lookup strategy. For example, a reply message including

next hop candidates is used in iterative lookup as a routing

table. However, no reply messages are used in recursive

lookup. Tables 1 and 2 indicate that both request and reply

messages have to include information at least in recursive

and iterative lookups.

130

Table 1: Information in request message.

 Identifier Key ID Address of

originator

TTL

Recursive ○ ○ ○ ○

Iterative ○

Table 2: Information in reply message.

 Identifier Next hop

Candidates

Recursive ○

Iterative ○

Recursive lookup can forward in parallel because it trusts

other nodes with forwarding request messages. Messages

have to include the address of the originator, the message

identifier to determine what value is received for which

request message, and the Time To Live (TTL) which is set

infinitely to forward request messages. The Identifier is set

like the time made the request message. In iterative lookup,

on the other hand, request messages do not have to include

the address of the originator, identifier, or TTL because the

originator controls the lookup. It only includes the key ID.

However, reply messages must have some next hop

candidates. Forwarding cannot continue because request and

reply messages in both lookups are missing some necessary

information.

By considering these differences, we implemented a

transformed message format and lookup strategy. This

transformed process particularly executes the transform

from recursive to iterative and vice versa. It needs to be

executed at all nodes on a flat DHT that does not have a

hierarchy. However, the extent of the lookup strategy on

hierarchical DHT is localized by clustering. For this reason,

the transformed process is only executed at super nodes,

which are contact points between clusters. The super nodes

are confined to belong to lower clusters. They provide

normal nodes with forwarding to top-level cluster and other

clusters. Also, they provide other super nodes with

forwarding to lower clusters. The flow for this operation of

super nodes is outlined Figure 4.

Figure 4: Transformed process at super node of Lower

cluster.

When a super node receives a request message for

iterative lookup from a normal node, if the destination is in

another cluster, it creates a request message for recursive

lookup from the subject matter of that message. However,

the request message for iterative lookup does not include the

identifier, the address of the originator, and TTL. For this

reason, the super node creates a new identifier for the

request message by the time made the message, and sets the

TTL from the route. Also, the address of the originator is

specified by the super node. Normal nodes do not read

messages for recursive lookup because they do not

transform from recursive into iterative message format.

Therefore, super nodes provide the originator with a

forwarding destination node, and accept the reply message

including the value with the transformed recursive into

iterative message format.

However, when a super node belonging to a lower cluster

receives a request message for recursive lookup, it can

create a message for iterative lookup by only obtaining a

key ID from the message. The value from the destination

node similarly passes the super node, and it is sent the value

of the transformed format.

4.3 Lookup strategy

We propose that higher clusters use recursive lookup, and

lower clusters use iterative lookup. Here, a top-level cluster

is recognized as a higher cluster and uses recursive lookup.

As a result, the pattern for lookup executed in the above

transformed process is categorized as two patterns, (A) from

the lower to the top-level cluster, and (B) from the higher to

the lower cluster.

First, Figure 5 shows an example of pattern (A).

Figure 5: Lookup from lower to higher cluster.

The flow for lookup where request and reply messages

are forwarded is indicated by the number in Figure 5. In

addition, request messages for iterative lookup are

transformed into those for recursive lookup. First, the

originator requests a super node to forward to another

cluster with iterative lookup (Figure 5 (1)). The super node

transforms the message at the start, and starts recursive

lookup. The lookup forwards to super and destination nodes

(Figure 5 (2)-(4)). Although the destination does not
directly send the value to the originator, it sends the super

node belonging to the originator (Figure 5 (5)). The super

node transforms the received message, and sends data to the

originator (Figure 5 (6)). In this case, originator node waits

for the message as Figure (6). However, the time may

exceed the timeout of Iterative lookup. Here, we assume that

super nodes do not leave the network, so some nodes

certainly can communicate to super nodes. For the

assumption, originator node waits to receive reply message

from super node, because the node makes a reply certainly.

131

We consider that this pattern shorter the latency of the

entire lookup more than that with only iterative lookup

because it uses recursive lookup at the part with low churn.

Second, Figure 6 shows an example of pattern (B).

Figure 6: Lookup from higher to lower cluster.

A super node in this pattern executes the transformed

process that creates a request message for iterative lookup

from the request message for recursive lookup. Therefore,

when the originator sends a request message for recursive

lookup, lookup is executed at the super node of the

destination cluster (Figure 6 (1), (2)). The super node

executes the transformed process, and forwards destination

by using iterative lookup (Figure 6 (3), (4)). The value is

presented by using the communication shown in Figure 6 (4).

The super node sends a reply message including the value

for recursive lookup to the originator (Figure 6 (5)).

Incidentally, the originator has to wait 2Tr because the

lookup uses iterative lookup in the middle of lookup. By

using iterative lookup at lower clusters where the churn rate

is high, this pattern can shorten the latency of the entire

lookup more than that with only recursive lookup.

5 EXPERIMENTS

5.1 Presupposition

We implemented the lookup in the Overlay Weaver [11]

to evaluate our lookup strategy and compared its

performance with that of only recursive or iterative lookup.

First, the setting for running the simulation and the

version of the Overlay Weaver were:

・ OS: Windows 7 Professional 64 bits

・ CPU: Intel Core i5 3.2 GHz

・ Memory: 4.0 GB

・ Overlay Weaver: Ver. 0.10

Table 3 summarizes the parameters we set in the

simulation.

Table 3: Parameters in simulation.

No. of nodes (N) 1000

No. of clusters (C) 4

Latency of one hop (t) 6 msec

Recursive timeout (Tr) 84 msec

Iterative timeout (Ti) 15 msec

C also means the number of super nodes, and C among N

works as super nodes. Then, the lower-level cluster is built

by other nodes as normal nodes. Normal nodes have no

relation to the distribution of R, and there is not much

difference between the numbers of nodes in each cluster. Tr

is based on the definition expressed in Subsection 2.2. We

assumed that path length l was defined as  'logNO when N’

was CN / as the number of one of the lower-level clusters.

Also, we considered that it had the lookup of top-level

clusters and a potential of over  'logNO , and we added

various values to l. Tr is defined by multiplying t by l.

Similarly, Ti is multiplying t by 2 and adding a slight

allowance because a node has to wait for a response in

iterative lookup. Path length l is generally determined to be

the key ID, which is a parameter that is not included in

Table 3. This key ID is used the same as key ID to equalize

the effect of l in all simulations as much as possible. By

equalizing the effect, we ran the simulation for the key ID

100 times, and measured the average. In addition, we

assumed that a higher and lower cluster were the same

cluster in every simulation. We also assumed that churn rate

p of higher clusters using recursive lookup was one at all

times, and p in lower clusters using iterative lookup could be

set freely. According to formula (1), p means the churn rate

and needs S which is nearly a fixed value. For this reason,

nodes repair fewer routing tables by churning during lookup.

Additionally, the stabilization process was set to a large

interval of 125 msec. This means E[S] had a fixed value

because nodes repaired fewer routing tables due to the

stabilization process.

In addition, the following shows the routing tables of

nodes.

・ Predecessor node

・ Successor List (not more than eight successor nodes)

・ Finger table

・ Normal nodes have super nodes in the cluster

・ Super nodes have other super nodes in top-level cluster

When a normal node forwards a request message to

another cluster, the node can forward the message to a super

node in the same cluster in one hop. Additionally, a super

node knows all of other super nodes in the lookup for the

top-level cluster, and can forward the message to super node

of the destination cluster in one hop.

We considered lookup where a normal node forwards

request messages to the node of another cluster.

Additionally, there are three lookup patterns for a cluster,

and each lookup is executed in different nodes.

We measured latency from higher to lower clusters and

otherwise with each lookup strategy using the above

parameters.

5.2 Results

We measured average latency with simulation. Here, we

assumed that the latency was the time until the destination

node received a request message. In addition, the time also

included the internal processing time of each node.

Therefore, it measured E[RL] and E[IL] as follows in this

simulation.

132

)4(
1

][rl

l

T
p

p
tlRLE




 )5(
1

12][ilT
p

p
tlILE




First, we will consider pattern (B) in Subsection 4.3,

which is a lookup whose destination cluster is higher. It

assumes that the p of the higher cluster and that of the super

node that belongs to a lower cluster is set to one at all times.

Also, the originator does not leave the network. Additionally,

we assumed that there was one lower cluster and three

higher clusters. Therefore, we measured the average latency

of nine lookup patterns that forward request messages to

higher clusters. The results obtained from simulation are

presented in Figure 7.

0

10

20

30

40

50

60

70

80

90

100

1 0.9 0.8 0.7 0.6

A
v

er
a

g
e

la
te

n
cy

 (
m

se
c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 7: Average latency to three higher clusters by each

lookup strategy.

This lookup pattern has little relevance to churn rate. First

address is the super node belonging at the cluster because

this lookup pattern necessarily forwards a request message

to other cluster. The super node forwards the request

message to super node belonging at destination cluster. Each

node is assumed that churn does not occur. In addition,

churn also does not occur after that because destination

cluster is higher. As a result, the average latency hardly

changes at all under any p. In Figure 7, when all nodes are

steady state, the latency of our method is twice as short as

that of iterative lookup. Although it is compared to recursive

lookup, it has nearly latency of that.

Second, we will consider pattern (A) which is the lookup

from higher to lower cluster. There are three lookup patterns

from other three higher clusters. We set lower cluster to p

which is single value from 1 to 0.6. Also, we ran a

simulation for each p 100 times and measured the average

latency in each lookup strategy. The result shows in Figure 8.

If churn increases in Figure 8, the average latency also

increases. Recursive and iterative lookups are much the

same as Figure 1. However, our method is same well as

recursive lookup when p is one. If p decreases, increment of

the average latency is similar to that of iterative lookup.

Also, the result of our method is not identical with that of

iterative lookup. Margin of average latency on each lookup

is invariant from p = 1 to p = 0.6. Recursive lookup has the

best average latency at only p = 1. However, from p = 0.9,

recursive lookup has the worst average latency.

0

50

100

150

200

250

300

350

400

450

500

1 0.9 0.8 0.7 0.6

A
v

er
a
g

e
la

te
n

cy
 (

m
se

c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 8: Average latency to one lower cluster by each

lookup strategy.

Here, we will think expected latency of this structure.

This means the latency when any node forwards. Also, this

has relevance to the structure. For example, there are one

lower cluster and three higher clusters in above simulation.

If higher cluster is more than lower cluster, it is generally

expected better latency. Because it is high probability that

destination cluster is higher. On the other hand, if lower

cluster is more than higher cluster, expected latency

becomes low because it is high probability that destination

cluster is lower.

For this reason, by these results, we measured the average

latency of the structure. This was measured by multiplying

each of average latency which destination cluster is both

higher and lower by the number of higher or lower clusters.

In this case, it multiplies result of Figure 7 by three as the

number of higher clusters and that of Figure 8 by one as the

number of lower clusters. Then, it measured the average of

these results. We assumed that it is expected latency on the

structure. Figure 9 shows the result of the case that there are

one lower cluster and three higher clusters.

0

50

100

150

200

250

300

350

400

450

500

1 0.9 0.8 0.7 0.6

E
x

p
ec

te
d

 l
a

te
n

cy
 (

m
se

c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 9: Expected latency on one lower cluster and three

higher clusters.

This hierarchical DHT is made mostly of higher cluster,

and so the expected latency is better than average latency to

lower cluster. Iterative lookup and our method have flat

latency well. Also, recursive lookup becomes better average

latency than average latency of only lookup to lower cluster.

Here, we think about relationship between the average

latency and the number of each cluster. In above case, we

show the average latency that structure is one lower cluster

and three higher clusters. We think that the average latency

is influenced by the number of lower and higher clusters.

133

Therefore, we considered simulations which have different

the number of these clusters within C.

First, we ran simulation that structure has two lower

clusters and two higher clusters. Each lower cluster is set

same p. In this case, we obtained six lookup patterns that

destination cluster is lower. Also, there are six lookup

patterns that destination cluster is higher. As it is for Figure

7 and Figure 8, we measured the average latency in each

lookup pattern. Figure 10 and Figure 11 show each of

average latency, to lower and higher cluster.

0

10

20

30

40

50

60

70

80

90

100

1 0.9 0.8 0.7 0.6

A
v
er

a
g
e

la
te

n
cy

 (
m

se
c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 10: Average latency to two higher clusters by each

lookup strategy.

0

50

100

150

200

250

300

350

400

450

500

1 0.9 0.8 0.7 0.6

A
v

er
a

g
e

la
te

n
cy

 (
m

se
c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 11: Average latency to two lower clusters by each

lookup strategy.

These streams are not much more than Figure 7 and

Figure 8. The result of Figure 10 is a little higher than that

of Figure 7. Also, that of Figure 11 becomes low a little.

However, these results are evaluated relatively, and they

mostly equal. We will discuss minor margin about their data

on Section 6. Similarly, by these results, we measure

expected latency of this structure. The result is shown

Figure 11.

0

50

100

150

200

250

300

350

400

450

500

1 0.9 0.8 0.7 0.6

E
x

p
ec

te
d

 l
a

te
n

cy
 (

m
se

c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 11: Expected latency on two lower clusters and

two higher clusters.

This result is totally a little higher than result of Figure 9.

When p is 0.8, the result of Figure 9 is that recursive lookup

is lower than iterative lookup. However, Figure 11 shows

that recursive lookup is higher than iterative lookup under

the churn rate.

Second, we ran simulation that structure has three lower

clusters and one higher cluster. In this case, lookup patterns

that destination cluster is higher are three patterns. There are

nine lookup patterns that destination cluster is lower. We

measured the average latency each lookup pattern similarly.

The average latency of the pattern that destination cluster is

higher is shown as Figure 12. Also, we show the average

latency to lower clusters in Figure 13.

0

10

20

30

40

50

60

70

80

90

100

1 0.9 0.8 0.7 0.6

A
v
er

a
g
e

la
te

n
cy

 (
m

se
c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 12: Average latency to one higher cluster by each

lookup strategy.

0

50

100

150

200

250

300

350

400

450

500

1 0.9 0.8 0.7 0.6

A
v

er
a

g
e

la
te

n
cy

 (
m

se
c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 13: Average latency to three lower clusters by each

lookup strategy.

These results have mostly same stream. However, max

value of average latency to lower clusters is higher than

other results to lower cluster. On the other hand, max value

of average latency to higher cluster is better than other

results. Similarly, by these results, we measure expected

latency of this structure, and the result is shown Figure 14.

0

50

100

150

200

250

300

350

400

450

500

1 0.9 0.8 0.7 0.6

E
x

p
ec

te
d

 l
a

te
n

cy
 (

m
se

c)

Churn rate (p)

Recursive

Iterative

Our method

Figure 14: Expected latency on three lower clusters and

one higher cluster.

134

This result is much higher than other results of expected

latency. However, stream of the result is not much more

than other results. In addition, when p is 0.9, the expected

latency of recursive lookup is a little higher than other

lookup strategy.

By these results, when nodes forward request messages to

higher cluster, our method provides the performance of

recursive lookup. Also, our method provided the

performance of iterative lookup when nodes forward request

messages to lower cluster. This is possible under any churn

rate at lower cluster and proportion of higher to lower

cluster. As a result, our method is effective when compared

with only recursive or iterative lookup under any state and

structure.

6 DISCUSSION

We will discuss about above results. First, we note effect

of our method. In the case which destination cluster is

higher, it has the similar performance of recursive lookup

under any churn rate and structures. Also, when destination

cluster is lower, it has the similar performance of iterative

lookup under any situations. As a result, the expected

latency of our method is relatively better than only other

lookup strategy as integrated evaluation.

Second, we note the average latency of lookup to higher

cluster on each structure. For the average latency of each

lookup strategy, although the rate is almost same, the max

value each of average latency is much different. This is

considered that each lookup pattern have different path

length. The path length is that it is five at minimum and

eleven at maximum. If path length is long, latency becomes

high. Therefore, average latency included the pattern had

long path length becomes high. For this reason, the result of

Figure 10 includes patterns had long path length, and that of

Figure 12 does not include the patterns. However, the

patterns also have reference to another lookup. For example,

the result of Figure 13 becomes much high because it

includes the patterns had long path length. However, we

think that integrate effect of path length by measuring

expected latency. If we consider effect of churn rate

definitely, path length may have to be fixed.

For the results of expected latency, when higher cluster is

defined p = 0, if super nodes know churn rate of each cluster

and a number of clusters, we think that evaluate effective

lookup strategy under the churn rate. For example, if p of a

cluster becomes 0.8, the cluster uses iterative lookup when

there are already two cluster using recursive lookup and one

cluster using iterative lookup. This can know by Figure 11.

However, the case that p becomes 0 is less common in

P2P. For this reason, we have to define higher and lower

cluster. Therefore, we have to research about rigorous p and

structure of clusters, a number of nodes and clusters.

7 CONCLUSION

We noted the effect of churn for recursive and iterative

lookups in this study, and there were differences in the

churn rate for each cluster on hierarchical DHT when the

reliability of nodes was considered. We proposed a lookup

method that will leverage both lookup advantages by culling

the lookup strategy for each cluster. Additionally, we

demonstrated that the new approach is significant in

comparison to only recursive or iterative lookups. As a

result, our method had the best expected latency under any

churn rate. In future work, we need to consider an approach

that dynamically applies our method to a DHT system.

Additionally, we intend to propose an adaptive method that

is able to adjust to variations in clusters by specifically

defining the reliability of nodes and measuring the churn

system. Also, we intend to consider various other

parameters for the lookup strategy and how to provide

optimal lookup.

REFERENCES

[1] I.Stoica, R.Morris, D.Karger, M.Frans Kaashoek, and

H.Balakrishnan, “Chord: A Scalable Peer-to-peer

Lookup Service for Internet Applications”,

Proceedings of the SIGCOMM, 2001.

[2] P.Maymounkov, D.Mazieres, “Kademlia: A Peer-to-

peer Information System Based on the XOR Metric”,

IPTPS02, pp.53-65, 2002.

[3] A,Rowstron and P.Druschel, “Pastry: Scalable,

distributed object location and routing for large-scale

peer-to-peer systems”, IFIP/ACM Intermational

Conference on Distributed Systems Platforms

(Middleware), pp.329-350, 2001.

[4] K.Shudo, D.Kato, Y.Kadobayashi, Y.Doi, “A

Comparative Study of Iterative and Recursive Lookup

Styles on Structured Overlays”, The Special Interest

Group Notes of IPSJ “system software and Operating

System”, Vol.86, pp.9-16, 2006.

[5] S.Doi, S.Matsuura, K.Fujikawa, H.Sunahara, “Churn

Tolerant Overlay Network Using Time Layered and

Time Aggregation Methods”, Transactions of

Information Processing Society of Japan Vol. 51, No.4,

pp.1142-1151, 2010.

[6] S.Saroiu, “Measurement and analysis of Internet

content delivery systems.”, Doctoral Dissertation,

2004.

[7] D.Wu, Y.Tian,K.W.Ng, “An analytical study on

optimizing the lookup performance of distributed hash

table systems under churn”, Concurrency and

Computation: Practice & Experience, Vol.19, pp.543-

569, 2007.

[8] L.Garces-Erice, E.W.Biersackm, P.A.Felber, K.W.Ross,

and G.Urvoy-Keller, “Hierarchical Peer-to-peer

Systems”, ACM/IFIP International Coference on

Parallel and Distributed Computing, 2003.

[9] S.Zoels, Z.Despotovic, W.Kellerer, “On hierarchical

DHT system - An analytical approach for optimal

designs”, Computer Communications, Vol.31, pp.576-

590, 2008.

[10] F.Sato, “Configuration Method for Hierarchical DHT

Systems Based on Join/Leave Ratio”， Transactions

of Information Processing Society of Japan Vol.51,

No.2, pp.418-428, 2010.

[11] K.Shudo, “Overlay Weaver: An Overlay Construction

Toolkit“, HTML Available at,

“http://overlayweaver.sourceforge.net/index-j.html”.

135

